
Tutorial on Deep Learning with
Theano and Lasagne

Jan Schlüter

Sander Dieleman

EMBL-EBI

2016-04-21

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Tutorial Outline

● Foundations

○ What are Artificial Neural Networks?

○ Practical part: Theano and Lasagne

● Learning

○ Loss functions

○ Gradient Descent

○ Practical part: Digit recognition

● Evaluation

○ Overfitting and Underfitting

○ Practical part: Validation and Testing

● ConvNets

○ Motivation

○ Practical part: Better digit recognition

● Tricks of the Trade

● Outlook

image © arkpo, fotolia.de

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

What are Artificial Neural Networks?

“a simulation of a small brain”

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

What are Artificial Neural Networks?

“a simulation of a small brain”

not.

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

What are Artificial Neural Networks?

a fancy name for particular mathematical expressions, such as:

y = σ(b + w

T

x) (equivalent to logistic regression)

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

What are Artificial Neural Networks?

a fancy name for particular mathematical expressions, such as:

y = σ(b + w

T

x)

expression can be visualized as a graph:

x b + w

T

x y

Output value is computed as a

weighted sum of its inputs,

followed by a nonlinear function.

b + w

T

x = b + Σ
i

w

i

x

i

(equivalent to logistic regression)

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

What are Artificial Neural Networks?

a fancy name for particular mathematical expressions, such as:

y = σ(b + W

T

x)

expression can be visualized as a graph:

x b + W

T

x y

Output values are computed as

weighted sums of their inputs,

followed by a nonlinear function.

b + W

T

x = b

j

 + Σ
i

w

ij

x

i

(multiple logistic regressions)

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

What are Artificial Neural Networks?

a fancy name for particular mathematical expressions, such as:

y = σ(b

2

 + W

2

Tσ(b

1

 + W

1

T

x))

expression can be visualized as a graph:

x b

1

 + W

1

T

x

(stacked logistic regressions)

yh b

2

 + W

2

T

h

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

What are Artificial Neural Networks?

a fancy name for particular mathematical expressions, such as:

y = σ(b

2

 + W

2

Tσ(b

1

 + W

1

T

x))

expression can be visualized as a graph:

(stacked logistic regressions)

Universal

Approximation

Theorem:

This can model

any continuous

function from ℝn

to ℝm

 arbitrarily

well (if h is made

large enough).

x b

1

 + W

1

T

x yh b

2

 + W

2

T

h

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

● Some functions are exponentially more compact when

expressed as a deep network instead of a shallow one

● Evidence indicates that for complex tasks, it is easier to

optimize a deep network to perform well than a shallow one

● Humans organize their ideas and concepts hierarchically

● Humans first learn simpler concepts and then compose them

to represent more abstract ones

● Engineers break-up solutions into multiple levels of

abstraction and processing

 (e.g., Hastad et al. 1986, Bengio & Delalleau 2011)

 (Y. Bengio, Deep Learning, MLSS 2015)

Interlude: Why Deep Networks?

Mathematical arguments:

Intuitive arguments:

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

What are Artificial Neural Networks?

a fancy name for particular mathematical expressions, such as:

y = σ(b

2

 + W

2

Tσ(b

1

 + W

1

T

x))

expression can be visualized as a graph:

x b

1

 + W

1

T

x

(stacked logistic regressions)

yh b

2

 + W

2

T

h

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

What are Artificial Neural Networks?

a fancy name for particular mathematical expressions, such as:

y = σ(b

3

 + W

3

Tσ(b

2

 + W

2

Tσ(b

1

 + W

1

T

x)))

expression can be visualized as a graph:

x b

1

 + W

1

T

x yh

1

b

2

 + W

2

T

h

1

h

2

b

3

 + W

3

T

h

2

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

What are Artificial Neural Networks?

a fancy name for particular mathematical expressions, such as:

f

W,b

(x) = σ(b + W

T

x) y = (f

W₃,b₃
 ∘ f

W₂,b₂
 ∘ f

W₁,b₁
)(x)

expression can be visualized as a graph:

x h

1

h

2

y“dense layer”

composed of simpler functions, commonly termed “layers”

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Theano and Lasagne

Theano is a mathematical expression compiler. It allows to define

 y = σ(b

3

 + W

3

Tσ(b

2

 + W

2

Tσ(b

1

 + W

1

T

x)))

 and compile an executable function that computes this expression

 efficiently, numerically stable, on CPU or GPU, for any input.

Lasagne builds on top of Theano. It provides the building blocks

 (“layers”) to easily define expressions for neural networks.

 InputLayer → DenseLayer → DenseLayer → DenseLayer

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Theano: Baby Steps

Multiplying numbers

in Python:

>>> a = 6
>>> b = 7
>>> a * b
42

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Theano: Baby Steps

Multiplying numbers

in Python:

>>> a = 6
>>> b = 7
>>> a * b
42

assigned Python variables:

a: 6
b: 7

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Theano: Baby Steps

Multiplying numbers

in Python:

>>> a = 6
>>> b = 7
>>> a * b
42
>>> y = a * b
>>> y
42

assigned Python variables:

a: 6
b: 7

y: 42

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Theano: Baby Steps

Multiplying numbers

in Theano:

>>> import theano
>>> T = theano.tensor
>>> a = T.scalar(‘A’)
>>> b = T.scalar(‘B’)
>>> a * b
Elemwise{mul,no_inplace}.0

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Theano: Baby Steps

Multiplying numbers

in Theano:

>>> import theano
>>> T = theano.tensor
>>> a = T.scalar(‘A’)
>>> b = T.scalar(‘B’)
>>> a * b
Elemwise{mul,no_inplace}.0

assigned Python variables:

a:
b:

Variable(name=’A’, type=scalar)

Variable(name=’B’, type=scalar)

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Theano: Baby Steps

Multiplying numbers

in Theano:

>>> import theano
>>> T = theano.tensor
>>> a = T.scalar(‘A’)
>>> b = T.scalar(‘B’)
>>> a * b
Elemwise{mul,no_inplace}.0
>>> y = a * b

assigned Python variables:

a:
b:

y:

Variable(name=’A’, type=scalar)

Variable(name=’B’, type=scalar)

Variable(name=∅, type=scalar)

Apply(op=Elemwise(mul))

owner

inputs

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Theano: Baby Steps

Multiplying numbers

in Theano:

>>> import theano
>>> T = theano.tensor
>>> a = T.scalar(‘A’)
>>> b = T.scalar(‘B’)
>>> a * b
Elemwise{mul,no_inplace}.0
>>> y = a * b
>>> theano.pp(y)
‘(A * B)’

assigned Python variables:

a:
b:

y:

Variable(name=’A’, type=scalar)

Variable(name=’B’, type=scalar)

Variable(name=∅, type=scalar)

Apply(op=Elemwise(mul))

owner

inputs

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Theano: Baby Steps

Multiplying numbers

in Theano:

>>> import theano
>>> T = theano.tensor
>>> a = T.scalar(‘A’)
>>> b = T.scalar(‘B’)
>>> a * b
Elemwise{mul,no_inplace}.0
>>> y = a * b
>>> fn = theano.function(
... [a, b], y)

assigned Python variables:

a:
b:

y:
fn: Function object

Variable(name=’A’, type=scalar)

Variable(name=’B’, type=scalar)

Variable(name=∅, type=scalar)

Apply(op=Elemwise(mul))

owner

inputs

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Theano: Baby Steps

Multiplying numbers

in Theano:

>>> import theano
>>> T = theano.tensor
>>> a = T.scalar(‘A’)
>>> b = T.scalar(‘B’)
>>> a * b
Elemwise{mul,no_inplace}.0
>>> y = a * b
>>> fn = theano.function(
... [a, b], y)
>>> r = fn(6, 7)

assigned Python variables:

a:
b:

y:
fn: Function object

r: 42

Variable(name=’A’, type=scalar)

Variable(name=’B’, type=scalar)

Variable(name=∅, type=scalar)

Apply(op=Elemwise(mul))

owner

inputs

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

theano.function

>>> fn = theano.function([a, b], y)

What happens under the hood?

● Theano checks that the output expression indeed depends on

the given input variables

● It optimizes the output expression to compute the same, but:

○ more efficiently, e.g., replacing x*y/x by y

○ more numerically stable, e.g., for log(1+exp(x))

○ on a graphics card, if configured to do so

● It emits C++ code computing the outputs given the inputs,

compiles the code and imports it to be callable from Python

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Theano: Small Neural Network

We will now define a small neural network in Theano:

 y = σ(b

2

 + W

2

Tσ(b

1

 + W

1

T

x))

>>> import theano; import theano.tensor as T
>>> x = T.vector(‘x’)
>>> W1 = T.matrix(‘W1’)
>>> b1 = T.vector(‘b1’)
>>> h1 = T.nnet.sigmoid(b1 + T.dot(W1.T, x))

 Fill in the missing steps!

>>> fn = theano.function([x,W1,b1,W2,b2], y)

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Theano: Small Neural Network

We will now define a small neural network in Theano:

 y = σ(b

2

 + W

2

Tσ(b

1

 + W

1

T

x))

>>> import theano; import theano.tensor as T
>>> x = T.vector(‘x’)
>>> W1 = T.matrix(‘W1’)
>>> b1 = T.vector(‘b1’)
>>> h1 = T.nnet.sigmoid(b1 + T.dot(W1.T, x))
>>> W2 = T.matrix(‘W2’)
>>> b2 = T.vector(‘b2’)
>>> y = T.nnet.sigmoid(b2 + T.dot(W2.T, h1))
>>> fn = theano.function([x,W1,b1,W2,b2], y,
... allow_input_downcast=True)

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Theano: Small Neural Network

We wanted to define a small neural network in Theano:

 y = σ(b

2

 + W

2

Tσ(b

1

 + W

1

T

x))

Let’s see if our Theano expression matches what we wanted:

>>> theano.pp(y)
'sigmoid((b2 + (W2.T \\dot sigmoid((b1 + (W1.
T \\dot x))))))'

Looks good!

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Theano: Small Neural Network

We have now defined a small neural network in Theano:

 y = σ(b

2

 + W

2

Tσ(b

1

 + W

1

T

x))

To run the compiled function, we need values for the network

parameters. Assuming an input vector of 784 values, a hidden

layer of 100 values and a single output value:

>>> import numpy as np
>>> weights1 = np.random.randn(784, 100)
>>> bias1 = np.random.randn(100)
>>> weights2 = np.random.randn(100, 1)
>>> bias2 = np.random.randn(1)

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Theano: Small Neural Network

We have now defined a small neural network in Theano:

 y = σ(b

2

 + W

2

Tσ(b

1

 + W

1

T

x))

>>> import numpy as np
>>> weights1 = np.random.randn(784, 100)
>>> bias1 = np.random.randn(100)
>>> weights2 = np.random.randn(100, 1)
>>> bias2 = np.random.randn(1)

To pass some random input through the network:

>>> fn(np.random.randn(784), weights1, bias1,
... weights2, bias2)
array([0.99683517], dtype=float32)

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Theano: Small Neural Network

We have now defined a small neural network in Theano:

 y = σ(b

2

 + W

2

Tσ(b

1

 + W

1

T

x))

Note that this definition only needs a minor change to process

multiple input vectors in parallel:

 Y = σ(b

2

 + W

2

Tσ(b

1

 + W

1

T

X))

It’s similarly easy to adapt our network definition:

>>> x = T.matrix(‘X’)
We just need to re-run three lines:

>>> h1 = ...
>>> y = ...
>>> fn = theano.function(...)

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Theano: Small Neural Network

We have now defined a small neural network in Theano:

 y = σ(b

2

 + W

2

Tσ(b

1

 + W

1

T

x))

Note that this definition only needs a minor change to process

multiple input vectors in parallel:

 Y = σ(b

2

 + W

2

Tσ(b

1

 + W

1

T

X))

But: In numpy and Theano, data points are usually organized in

rows rather than columns (as the underlying memory layout

follows C conventions, not Fortran conventions as in Matlab):

 Y = σ(σ(XW

1

 + b

1

)W

2

 + b

2

)

From now on, we will see this layout only.

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Lasagne: Small Neural Network

We will now define the same neural network in Lasagne:

 Y = σ(σ(XW

1

 + b

1

)W

2

 + b

2

)

>>> import lasagne
>>> X = T.matrix(‘X’)
>>> l1 = lasagne.layers.InputLayer(
... shape=(100, 784), input_var=X)

This defines an input layer which expects 100 inputs of 784

elements each (a 100x784 matrix).

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Lasagne: Small Neural Network

We will now define the same neural network in Lasagne:

 Y = σ(σ(XW

1

 + b

1

)W

2

 + b

2

)

>>> import lasagne
>>> X = T.matrix(‘X’)
>>> l1 = lasagne.layers.InputLayer(
... shape=(100, 784), input_var=X)

This defines an input layer which expects 100 inputs of 784

elements each (a 100x784 matrix). We can also define it to

expect an arbitrary number of inputs of 784 elements each:

>>> l1 = lasagne.layers.InputLayer(
... shape=(None, 784), input_var=X)

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Lasagne: Small Neural Network

We will now define the same neural network in Lasagne:

 Y = σ(σ(XW

1

 + b

1

)W

2

 + b

2

)

>>> l1 = lasagne.layers.InputLayer(
... shape=(None, 784), input_var=X)

We add two sigmoid dense layers on top:

>>> from lasagne.nonlinearities import sigmoid
>>> l2 = lasagne.layers.DenseLayer(
... l1, num_units=100, nonlinearity=sigmoid)
>>> l3 = lasagne.layers.DenseLayer(
 l2, num_units=1, nonlinearity=sigmoid)

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Lasagne: Small Neural Network

We will now define the same neural network in Lasagne:

 Y = σ(σ(XW

1

 + b

1

)W

2

 + b

2

)

>>> l2 = lasagne.layers.DenseLayer(
... l1, num_units=100, nonlinearity=sigmoid)
>>> l3 = lasagne.layers.DenseLayer(
 l2, num_units=1, nonlinearity=sigmoid)

Each layer is linked to the layer it operates on, creating a chain (in

this case). When creating the layers, Lasagne already creates

correctly-sized network parameters for us (that’s why it needs to

know the expected shape for the input layer, and the number of

units for each dense layer).

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Lasagne: Small Neural Network

We wanted to define the same neural network in Lasagne:

 Y = σ(σ(XW

1

 + b

1

)W

2

 + b

2

)

To obtain the expression, we call get_output on the top layer:

>>> Y = lasagne.layers.get_output(l3)

Comparing against our goal:

>>> theano.pp(Y)
'sigmoid(((sigmoid(((X \\dot W) + b)) \\dot W)
+ b))'

Looks good! The weights and biases have indistinguishable names

because we did not name our layers, but that’s fine.

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Lasagne: Small Neural Network

We have defined the same neural network in Lasagne:

 Y = σ(σ(XW

1

 + b

1

)W

2

 + b

2

)

Again, we can compile this into a function and pass some random

data through it (here, 3 input vectors of 784 values each):

>>> fn = theano.function([X], Y,
... allow_input_downcast=True)
>>> fn(np.random.randn(3, 784))
array([[0.88817853],
 [0.74262416],
 [0.86233407]], dtype=float32)

Network parameters are part of the graph and need not be given.

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Lasagne: Small Neural Network

Exercise: Modify the network such that l3 becomes a dense layer

with 100 sigmoid units, and add l4 as a dense layer with 10 units

and softmax nonlinearity.

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Lasagne: Small Neural Network

Exercise: Replace l3 by a dense layer with 100 sigmoid units, and

add l4 as a dense layer with 10 units and softmax nonlinearity.

Solution:

>>> from lasagne.layers import DenseLayer
>>> from lasagne.nonlinearities import softmax
>>> l3 = DenseLayer(l2, 100,
... nonlinearity=sigmoid)
>>> l4 = DenseLayer(l3, 10,
... nonlinearity=softmax)

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Lasagne: Small Neural Network

Exercise: Replace l3 by a dense layer with 100 sigmoid units, and

add l4 as a dense layer with 10 units and softmax nonlinearity.

Solution:

>>> from lasagne.layers import DenseLayer
>>> from lasagne.nonlinearities import softmax
>>> l3 = DenseLayer(l2, 100,
... nonlinearity=sigmoid)
>>> l4 = DenseLayer(l3, 10,
... nonlinearity=softmax)

This network can map 28x28=784 pixel images to a probability

distribution over 10 classes. So far, its output is fairly random.

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Learning

0

1

2

3

4

5

6

7

8

9

x h

1

h

2

y

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Learning

0

1

2

3

4

5
6

7

8

9

x h

1

h

2

y

f() = 5

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Learning

0
1

2

3

4

5

6

7

8

9

x h

1

h

2

y

f() = 5

f() = 0

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Learning

0

1

2

3

4
5

6

7

8

9

x h

1

h

2

y

f() = 5

f() = 0

f() = 4

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Learning

0

1
2

3

4

5

6

7

8

9

x h

1

h

2

y

f() = 5

f() = 0

f() = 4

f() = 1

...

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Learning: loss functions

0

1
2

3

4

5

6

7

8

9

x h

1

h

2

y

L(f(), 5)

...

+ L(f(), 0)

+ L(f(), 4)

+ L(f(), 1)

∑

i

 L(f(x

i

), t

i

)

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Learning: minimising the loss function

∑

i

 L(f(x

i

), t

i

) = 0

∂

∂θ

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Learning: gradient descent

∑

i

 L(f(x

i

), t

i

)

∂

∂θθ ← θ - η

Repeat until convergence:

learning rate

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Learning: backpropagation

∑

i

 L(f(x

i

), t

i

) = ∑

i

∂

∂θ
·

∂L

∂f

∂f

∂θ

x h

1

h

2

0

1

2

3
4

5

6

7

8

9

y

L(3, 1)

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Learning: backpropagation

∑

i

 L(f(x

i

), t

i

) = ∑

i

∂

∂θ
·

∂L

∂f

∂f

∂θ

x h

1

h

2

0

1

2

3
4

5

6

7

8

9

L(3, 1)

∂L

∂y

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

∂L

∂h

2

Learning: backpropagation

∑

i

 L(f(x

i

), t

i

) = ∑

i

∂

∂θ
·

∂L

∂f

∂f

∂θ

x h

1

0

1

2

3
4

5

6

7

8

9

L(3, 1)

∂L

∂y

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Learning: backpropagation

∑

i

 L(f(x

i

), t

i

) = ∑

i

∂

∂θ
·

∂L

∂f

∂f

∂θ

x

0

1

2

3
4

5

6

7

8

9

L(3, 1)

∂L

∂h

1

∂L

∂h

2

∂L

∂y

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Learning: backpropagation

∑

i

 L(f(x

i

), t

i

) = ∑

i

∂

∂θ
·

∂L

∂f

∂f

∂θ

∂L

∂W

1

∂L

∂W

2

∂L

∂h

1

= ·

∂h

1

∂W

1

∂L

∂h

2

= ·

∂h

2

∂W

2

∂L

∂W

3

∂L

∂y

= ·

∂y

∂W

3

Backpropagation amounts to

applying the chain rule to compute

derivatives w.r.t. model parameters

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Learning: backpropagation

∑

i

 L(f(x

i

), t

i

) = ∑

i

∂

∂θ
·

∂L

∂f

∂f

∂θ

∂L

∂W

1

∂L

∂W

2

∂L

∂h

1

= ·

∂h

1

∂W

1

∂L

∂h

2

= ·

∂h

2

∂W

2

∂L

∂W

3

∂L

∂y

= ·

∂y

∂W

3

Backpropagation amounts to

applying the chain rule to compute

derivatives w.r.t. model parameters

Each layer just needs to know how

to compute the partial derivative of

its parameters and input given the

partial derivative of its output.

Theano does this per operation.

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Learning: stochastic gradient descent (SGD)

To speed up learning,

approximate the loss using a small batch of examples

Stochastic approximation of the loss

+ much faster gradient steps

- more steps to convergence

∑

i

 L(f(x

i

), t

i

)

∂

∂θθ ← θ - η

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Loss and model must be differentiable

x

σ(x)

Sigmoid: σ(x) =

1

1 + exp(-x)

∂σ
∂x

= σ(x)(1 - σ(x))

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Loss and model must be differentiable

x

σ(x)

ReLU: σ(x) = max(x, 0)

∂σ
∂x

(0) = ??

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Loss and model must be sort of differentiable

x

σ(x)

ReLU: σ(x) = max(x, 0)

∂σ
∂x

(0) = ??

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Initialisation

is sensitive to the initial values of θ∂L

∂θ

If we’re not careful, gradients will either vanish or blow up

∂L

∂θθ ← θ - η

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Initialisation

is sensitive to the initial values of θ∂L

∂θ

If we’re not careful, gradients will either vanish or blow up

· 0θ ← θ - η

Small gradients: θ does not change, no learning happens

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Initialisation

is sensitive to the initial values of θ∂L

∂θ

If we’re not careful, gradients will either vanish or blow up

θ ← θ - η · ∞

Huge gradients: θ blows up, learning diverges

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Initialisation

is sensitive to the initial values of θ∂L

∂θ

If we’re not careful, gradients will either vanish or blow up

The deeper the network, the more sensitive it is.

Luckily, researchers have found simple recipes for initialization.

Lasagne includes these as well.

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Training in Theano

First ingredient: Symbolic differentiation.

>>> x = T.scalar(‘x’)
>>> y = 5 * x**2
>>> g = theano.grad(y, wrt=x)
>>> theano.pp(g)

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Training in Theano

First ingredient: Symbolic differentiation.

>>> x = T.scalar(‘x’)
>>> y = 5 * x**2
>>> g = theano.grad(y, wrt=x)
>>> theano.pp(g)
'(((fill((TensorConstant{5} * (x **
TensorConstant{2})), TensorConstant{1.0}) *
TensorConstant{5}) * TensorConstant{2}) * (x
** (TensorConstant{2} - TensorConstant{1})))'

Wading through this, it says:

 fill(5x

2

, 1.0) ⋅ 5 ⋅ 2 ⋅ x

(2 - 1)

 = 10 x

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Training in Theano

Second ingredient: Shared variables,

symbolic variables with an associated value:

>>> x = theano.shared(np.array([1.0, 2.0]))
>>> x.get_value()
array([1., 2.])

Can participate in expressions like other variables:

>>> fn = theano.function([], x**2)
>>> fn()
array([1., 4.])

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Training in Theano

Second ingredient: Shared variables,

symbolic variables with an associated value:

>>> x = theano.shared(np.array([1.0, 2.0]))
>>> x.get_value()
array([1., 2.])

Can participate in expressions like other variables:

>>> fn = theano.function([], x**2)
>>> fn()
array([1., 4.])
>>> x.set_value(np.array([3., 5.])); fn()
array([9., 25.])

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Training in Theano

Third ingredient: Updates,

expressions for new values of shared variables:

>>> upd = {x: x + 0.5}

Can be applied as part of a function call:

>>> fn = theano.function([], [], updates=upd)

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Training in Theano

Third ingredient: Updates,

expressions for new values of shared variables:

>>> upd = {x: x + 0.5}

Can be applied as part of a function call:

>>> fn = theano.function([], [], updates=upd)
>>> fn()
>>> x.get_value()
array([3.5, 5.5])
>>> fn()
>>> x.get_value()
array([4., 6.])

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Training in Theano

Putting these ingredients together, we can:

● Define a neural network using shared variables for its

parameters

● Use symbolic differentiation to obtain the gradient of a loss

function with respect to these parameters

● Define an update dictionary that applies a learning rule to the

parameters, such as gradient descent

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Training in Lasagne

● Define a neural network using shared variables for its

parameters

Lasagne already does this. To obtain the parameters for a

network, call get_all_params on its output layer (or layers):

>>> params = lasagne.layers.get_all_params(
... l4, trainable=True)

The second argument restricts the list to trainable parameters;

some layers may have parameters that are not to be trained.

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Training in Lasagne

● Use symbolic differentiation to obtain the gradient of a loss

function with respect to these parameters

We will use a dummy loss function: The output for the first class.

>>> loss = lasagne.layers.get_output(l4)[:,0]
>>> loss = loss.mean() # average over batch

We can obtain the gradients of all parameters at once now:

>>> grads = theano.grad(loss, wrt=params)

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Training in Lasagne

● Define an update dictionary that applies a learning rule to the

parameters, such as gradient descent

For gradient descent, the update rule would be:

>>> eta = 0.01 # learning rate
>>> upd = {p: p - eta*g
... for p, g in zip(params, grads)}

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Training in Lasagne

● Define an update dictionary that applies a learning rule to the

parameters, such as gradient descent

For gradient descent, the update rule would be:

>>> eta = 0.01 # learning rate
>>> upd = {p: p - eta*g
... for p, g in zip(params, grads)}

Lasagne provides a shortcut for this (and many other rules):

>>> upd = lasagne.updates.sgd(
... grads, params, eta)

The shortcut can also be called with loss instead of grads.

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Training in Lasagne

We can now compile a function that updates the network to

minimize our dummy loss (the output for the first class):

>>> fn = theano.function(
... [X], loss, updates=upd)

Let’s call it a few times:

>>> x = np.random.randn(100, 784)
>>> fn(x)
array(0.1963508427143097, dtype=float32)
>>> fn(x)
array(0.18758298456668854, dtype=float32)

It goes down!

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Loss functions

● The loss function measures “how wrong” the network is.

● Compares predictions p = f(X; θ) to targets t for inputs X.

● Most common loss functions, computing a scalar “wrongness”:

○ for regression: Mean-Squared Error (MSE), usually with

real-valued targets and linear output units

L(p, t) = ∑

i

 (p

i

 - t

i

)

2

○ for binary classification: Binary Cross-Entropy, usually with

binary targets and sigmoid output units

L(p, t) = ∑

i

 -log(p

i

) t

i

 - log(1-p

i

) (1-t

i

)

○ for general classification: Categorical Cross-Entropy, usually

with integer targets and softmax output units

L(p, t) = ∑

i,c

 -log(p

i,c

) [t

i

=c]

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Digit Recognition

0

1

2

3

4

5

6

7

8

9

x h

1

h

2

y

Finally we’ve got everything in place to train a network for real!

The “Hello World” of Neural

Nets: Digit Recognition.

Dataset: “MNIST”: 60,000

 hand-written digits

Network: We’ll start with

 the one we defined before.

Loss function: Multinomial

 cross-entropy

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Digit Recognition

Exercise:

Download mlp.py from http://f0k.de/lasagne-embl/

It defines a skeleton of:

● dataset download

● network definition

● training loop

Missing pieces:

● define loss expression

● obtain updates dictionary

● compile training function

Open the file in a text editor and fill in the missing pieces.

Open a terminal, cd to the file’s directory and run:

python mlp.py

http://f0k.de/lasagne-embl/

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Validation / Testing

Example output:

Epoch 1 took 1.508 sec.
 training loss: 1.752
...
Epoch 5 took 1.451 sec.
 training loss: 0.354

We see that the “wrongness” decreases. But how well does the

network do? Let’s also compute the classification accuracy.

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Validation / Testing

We see that the “wrongness” decreases. But how well does the

network do? Let’s also compute the classification accuracy.

acc = lasagne.objectives.categorical_accuracy(
 predictions, targets).mean()
train_fn = theano.function([X, targets],
 [loss, acc],
 updates=updates)

err = np.array([0., 0.])

print(“ training loss: %.3f” % (err[0] / ...))
print(“ training acc.: %.3f” % (err[1] / ...))

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Validation / Testing

We see that the “wrongness” decreases. But how well does the

network do? Let’s also compute the classification accuracy. Let’s

then run it for 100 epochs at learning rate 0.2:

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Validation / Testing

We see that the “wrongness” decreases. But how well does the

network do? Let’s also compute the classification accuracy. Let’s

then run it for 100 epochs at learning rate 0.2:

Epoch 1 took 0.599 sec.
 training loss: 1.248
 training acc.: 0.640
Epoch 50 took 0.555 sec.
 training loss: 0.030
 training acc.: 0.993
Epoch 100 took 0.563 sec.
 training loss: 0.006
 training acc.: 1.000

100% correct!

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Validation / Testing

We see that the “wrongness” decreases. But how well does the

network do? Let’s also compute the classification accuracy. Let’s

then run it for 100 epochs at learning rate 0.2:

Epoch 1 took 0.599 sec.
 training loss: 1.248
 training acc.: 0.640
Epoch 50 took 0.555 sec.
 training loss: 0.030
 training acc.: 0.993
Epoch 100 took 0.563 sec.
 training loss: 0.006
 training acc.: 1.000

100% correct!

… on the

training set.

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Validation / Testing

Does that mean it recognizes digits?

100% correct!

… on the

training set.

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Validation / Testing

Does that mean it recognizes digits?

Not necessarily: Could have learned all examples by heart.

100% correct!

… on the

training set.

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Validation / Testing

Does that mean it recognizes digits?

Not necessarily: Could have learned all examples by heart.

We hope that in order to get all training examples correct, the

model had to discover something general about digits.

Important goal in Machine Learning: Generalization.

How well does the model perform on previously unseen examples?

100% correct!

… on the

training set.

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Validation / Testing

How well does the model perform on previously unseen examples?

Best way to find out: Try it. Spare some training examples (the

“validation set”), see how the model fares without training on them.

train_fn = theano.function([X, targets],
 [loss, acc],
 updates=updates)

val_fn = theano.function([X, targets],
 [loss, acc])

Running this one in a loop over the validation set, after training, we

get an accuracy of 97.7%.

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Overfitting

Let’s monitor performance on the validation set during training,

after each epoch: http://f0k.de/lasagne-embl/mlp4.py

After about 10 epochs, performance improves on training set only:

The model overfits to the training data.

http://f0k.de/lasagne-embl/mlp4.py

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Overfitting

Extreme case: After prolongued training, performance can even

decrease on validation data while improving on training data.

Counter-measures: Early stopping (if validation error increases),

 Regularization (e.g., weight decay, dropout),

 Different network architecture

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Convolutions

Fully-connected layer:

Each input is a scalar value,

each weight is a scalar value,

each output is the sum of

inputs multiplied by weights.

Convolutional layer:

Each input is a tensor (e.g., 2D),

each weight is a tensor,

each output is the sum of

inputs convolved by weights.

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Convolutions

this unit

is connected to all

pixels in the image

Fully-connected layer:

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Convolutions

so is this one!

Fully-connected layer:

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Convolutions

...and this one.

Fully-connected layer:

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Convolutions

consider a unit

that only sees part

of the image

This unit can learn to

detect a local pattern

in the image, e.g.

a pen stroke.

Locally-connected layer:

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Convolutions

This pattern may also

occur elsewhere, so

we can replicate the

unit across the image.

Convolutional layer:

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Convolutions

This pattern may also

occur elsewhere, so

we can replicate the

unit across the image.

Convolutional layer:

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Convolutions

This pattern may also

occur elsewhere, so

we can replicate the

unit across the image.

Convolutional layer:

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Convolutions

...until we’ve covered

all of it.

Convolutional layer:

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Convolutions

We can do the same

for the other units.

Convolutional layer:

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Convolutions

These units, detecting the same pattern in

different spatial positions across the image,

form a feature plane or feature map together.

There is a separate feature map for each type

of unit, for each pattern.

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Visualising feature maps

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Convolutions

We can also apply this

in other layers of the

network.

Now we combine

local information

from different

feature maps.

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Convolutions

Y = σ(b + XW)

X: ? x 784

W: 784 x 100

b: 100

Y: ? x 100

Y = σ(b + X ∗

W)

‘∗’ represents the convolution operation

X: ? x 1 x 28 x 28

W: 100 x 1 x 5 x 5

b: 100

Y: ? x 100 x 24 x 24

←28→

↑
28

↓

5

5

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Pooling

A pooling layer reduces the size of feature maps.

It’s just a fancy name for downsampling.

Max-pooling: take the max. activation across small regions

1 3 5 -3

-2 3 2 -1

1 2 -2 2

-1 3 -2 1

3 5

3 2

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Visualising feature maps

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Convolutions in 1D, 2D, 3D

1D: time series, sound

2D: images

3D: volumetric data, video

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Digit Recognition with Convolutions

Exercise:

Open your existing script or http://f0k.de/lasagne-embl/mlp4.py.

Instead of Input(784) → Dense(100) → Dense(100) → Dense(1),

use Input(1,28,28) → Conv(16, 3) → Conv(16, 3) → Pool(2)

 → Conv(32, 3) → Conv(32, 3) → Pool(2)

 → Dense(100) → Dense(1).

Conv2DLayer(incoming, num_filters, filter_size)

and MaxPool2DLayer(incoming, pool_size) are the layer

classes to use. Change X to T.tensor4. Set flatten=False for

loading the dataset. When ready, run the modified script.

http://f0k.de/lasagne-embl/mlp4.py

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Digit Recognition with Convolutions

The solution is at http://f0k.de/lasagne-embl/cnn.py It also changes

the network to use the rectifier nonlinearity instead of sigmoids.

Example output:

Epoch 36 took 1.837 sec.
 training loss: 0.000
 training acc.: 1.000
 valid. loss: 0.071
 valid. acc.: 0.990

Convolutions make assumptions that tend to work well for images

(process neighboring pixels together, learn translation-invariant

features), and MNIST is no exception. But we might still improve!

http://f0k.de/lasagne-embl/mlp4.py

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Trick of the Trade: Dropout

Randomly delete half of the units for each update step.

This makes the units more robust (it prevents co-adaptation).

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Trick of the Trade: Dropout

Randomly delete half of the units for each update step.

This makes the units more robust (it prevents co-adaptation).

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Trick of the Trade: Dropout

Randomly delete half of the units for each update step.

This makes the units more robust (it prevents co-adaptation).

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Trick of the Trade: Batch normalisation

Weight gradients depend on the unit activations.

Very small or very large activations lead to small/large gradients.

They make learning harder. For input units, Z-scoring the

training data helps. Batch normalisation does the same for

hidden units (countering changes).

batch normalisation

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Tricks of the trade in Lasagne

Exercise:

Open your existing script or http://f0k.de/lasagne-embl/mlp4.py or

http://f0k.de/lasagne-embl/cnn.py.

1. Add dropout before each dense layer:

DenseLayer(., .) → DenseLayer(dropout(.), .)
2. Add batch normalization after each hidden non-pooling layer:

SomeLayer(...) → batch_norm(SomeLayer(...))
i.e., not after the input layer and not after the output layer!

Both dropout and batch_norm are in lasagne.layers.

http://f0k.de/lasagne-embl/mlp4.py
http://f0k.de/lasagne-embl/cnn.py
http://f0k.de/lasagne-embl/cnn.py

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Tricks of the trade in Lasagne

Dropout / batch normalisation make predictions nondeterministic:

Predictions with dropout are random, predictions with batch

normalisation depend on other examples in mini-batch.

For validation (or testing), we need a deterministic alternative:

 Dropout: Scale activations by non-dropout probability.

 Batch normalisation: Collect running averages during training.

Only change required in Lasagne:

test_predictions = get_output(...,
 deterministic=True)
Use these predictions for validation loss, not for training loss!

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Outlook: Going Deeper

 Large Scale Visual Recognition Challenge:

1.2 million training images of 1000 classes

GoogLeNet: 22 layers, with auxiliary classifiers

Sep 2014: Going Deeper with Convolutions, http://arxiv.org/abs/1409.4842

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Outlook: Going Deeper

 Large Scale Visual Recognition Challenge:

1.2 million training images of 1000 classes

ResNet: 152 layers, with shortcut connections (here: 38 layers)

Dec 2015: Deep Residual Learning for Image Recognition, http://arxiv.org/abs/1512.03385

Mar 2016: Identity Mappings in Deep Residual Networks, http://arxiv.org/abs/1603.05027

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Outlook: Going Rounder

May 2015: U-Net: Convolutional Networks for Biomedical Image Segmentation, http://arxiv.org/abs/1505.04597

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Wrap-up

Lasagne is just one of many deep learning frameworks. Popular

alternatives: Caffe, Torch, Chainer, MXNet, TensorFlow, …

+ Lasagne provides all layers and optimization methods needed

to reimplement most research papers

+ Due to Theano’s symbolic differentiation, adding custom

layers or loss functions is easier than in other frameworks

- Lasagne does not provide a ready-to-use training loop

(but some addons do, e.g. https://github.com/dnouri/nolearn)

- Due to Theano, any new model will need initial compilation,

which can take some time especially for recurrent networks

https://github.com/dnouri/nolearn

Jan Schlüter & Sander Dieleman Lasagne-Tutorial @ EMBL-EBI http://f0k.de/lasagne-embl/

Wrap-up

This tutorial only covered the basics. Where to go from here?

● http://lasagne.readthedocs.org/en/latest/user/tutorial.html

gives a walk-through for a more fully-fledged MNIST script

● https://github.com/Lasagne/Recipes is a growing collection of

reimplementations of recent research papers in Lasagne

● The web page for this tutorial links to further material:

http://f0k.de/lasagne-embl/

● Our mailing list is the perfect place for questions, except of

course for the ones you’d like to ask right now!

https://groups.google.com/forum/#!forum/lasagne-users

http://lasagne.readthedocs.org/en/latest/user/tutorial.html
https://github.com/Lasagne/Recipes
http://f0k.de/lasagne-embl/
http://f0k.de/lasagne-embl/
https://groups.google.com/forum/#!forum/lasagne-users
https://groups.google.com/forum/#!forum/lasagne-users

